Vector Search
Vector Search Setup
Installation on DigitalOcean VPS
1. Install Ollama
curl -fsSL https://ollama.com/install.sh | sh
2. Pull the embedding model
ollama pull nomic-embed-text
This downloads ~274MB. The model will automatically start when needed.
3. Verify Ollama is running
curl http://localhost:11434/api/embeddings -d '{
"model": "nomic-embed-text",
"prompt": "test"
}'
Should return a JSON with an “embedding” array of 768 floats.
4. Restart your mu application
./mu
The app will now automatically:
- Generate embeddings for all indexed content (news, tickers, videos)
- Use semantic vector search for queries
- Fallback to keyword search if Ollama is unavailable
How it works
- Indexing: When news/tickers are indexed, embeddings are generated automatically
- Search: Queries are embedded and compared using cosine similarity
- Performance: ~50-100ms per embedding on 1-2 CPU cores
- Fallback: If Ollama is down, keyword search is used automatically
Testing
Try asking:
- “what’s the bitcoin price” → should find BTC ticker
- “ethereum value” → should find ETH ticker
- “crypto markets” → should find crypto-related news
- “digital gold” → should find Bitcoin content
Memory usage
- Ollama idle: ~100MB
- During embedding: +400MB temporarily
- Index with embeddings: ~4KB per entry












